

Computer Networks CS3611

Wireless and Mobile Networks

Haiming Jin

The slides are adapted from those provided by Prof. J.F Kurose and K.W. Ross.

Wireless and Mobile Networks: context

- more wireless (mobile) phone subscribers than fixed (wired) phone subscribers (10-to-1 in 2019)!
- more mobile-broadband-connected devices than fixed-broadbandconnected devices devices (5-1 in 2019)!
 - 4G/5G cellular networks now embracing Internet protocol stack, including SDN
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Chapter 7 outline

Introduction

Wireless

- Wireless Links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

- typically connected to wired network
- relay responsible for sending packets between wired network and wireless host(s) in its "area"
 - e.g., cell towers, 802.11 access points

- wireless link ——

- typically used to connect mobile(s) to base station, also used as backbone link
- multiple access protocol coordinates link access
- various transmission rates and distances, frequency bands

Characteristics of selected wireless links

- ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Chapter 7 outline

Introduction

Wireless

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

Wireless link characteristics: fading (attenuation)

Wireless radio signal attenuates (loses power) as it propagates (free space "path loss")

Free space path loss ~ $(fd)^2$

f: frequency *d*: distance

Wireless link characteristics: multipath

multipath propagation: radio signal reflects off objects ground, built environment, arriving at destination at slightly different times

Wireless link characteristics: noise

- interference from other sources on wireless network frequencies
- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoff
 - given physical layer: increase power -> increase SNR->decrease BER
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

Wireless link characteristics: hidden terminals

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Attenuation also causes "hidden terminals"

- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Chapter 7 outline

Introduction

Wireless

- Wireless links and network characteristics
- CDMA: code division multiple access
- WiFi: 802.11 wireless LANs
- Bluetooth

Chapter 7 outline

Introduction

Wireless

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

IEEE 802.11 Wireless LAN

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30 m	2.4 Ghz
802.11g	2003	54 Mbps	30m	2.4 Ghz
802.11n (WiFi 4)	2009	600	70m	2.4, 5 Ghz
802.11ac (WiFi 5)	2013	3.47Gpbs	70m	5 Ghz
802.11ax (WiFi 6)	2020 (exp.)	14 Gbps	70m	2.4, 5 Ghz
802.11af	2014	35 – 560 Mbps	1 Km	unused TV bands (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 Mhz

 all use CSMA/CA for multiple access, and have base-station and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels

spectrum divided into channels at different frequencies

- AP admin chooses frequency for AP
- interference possible: channel can be same as that chosen by neighboring AP!

802.11: Association

- arriving host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - then may perform authentication [Chapter 8]
 - then typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

passive scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to H1

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

IEEE 802.11: multiple access

- avoid collisions: 2⁺ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with detected ongoing transmission by another node
- 802.11: no collision detection!
 - difficult to sense collisions: high transmitting signal, weak received signal due to fading
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: *avoid collisions:* CSMA/<u>C</u>ollision<u>A</u>voidance

802.11 frame: addressing

0 - 2312 2 2 6 6 6 2 6 4 address address address frame address seq duration payload CRC control 3 control 2 4

Address 1: MAC address of wireless host or AP to receive this frame

> Address 2: MAC address of wireless host or AP transmitting this frame

Address 4: used only in ad hoc mode

Address 3: MAC address of router interface to which AP is attached

802.11 frame: addressing

802.11 frame: addressing

802.11: mobility within same subnet

- H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
 - self-learning (Ch. 6): switch will see frame from H1 and "remember" which switch port can be used to reach H1

802.11: advanced capabilities

Rate adaptation

 base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

1. SNR decreases, BER increase as node moves away from base station

2. When BER becomes too high, switch to lower transmission rate but with lower BER

802.11: advanced capabilities

power management

- node-to-AP: "I am going to sleep until next beacon frame"
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-to-mobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

Chapter 7 outline

Introduction

Wireless

- Wireless links and network characteristics
- CDMA: code division multiple access
- WiFi: 802.11 wireless LANs

Bluetooth

Personal area networks: Bluetooth

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- 2.4-2.5 GHz ISM radio band, up to 3 Mbps
- master controller / client devices:
 - master polls clients, grants requests for client transmissions

Personal area networks: Bluetooth

- TDM, 625 μsec sec. slot
- FDM: sender uses 79 frequency channels in known, pseudo-random order slot-to-slot (spread spectrum)
 - other devices/equipment not in piconet only interfere in some slots
- parked mode: clients can "go to sleep" (park) and later wakeup (to preserve battery)

Chapter 7 outline

Introduction

Wireless

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

4G/5G cellular networks

- the solution for wide-area mobile Internet
- widespread deployment/use:
 - more mobile-broadband-connected devices than fixedbroadband-connected devices devices (5-1 in 2019)!
 - 4G availability: 90% in US
- transmission rates up to 100's Mbps
- technical standards: 3rd Generation Partnership Project (3GPP)
 - wwww.3gpp.org
 - 4G: Long-Term Evolution (LTE)standard

4G/5G cellular networks

similarities to wired Internet

- edge/core distinction, but both belong to same carrier
- global cellular network: a network of networks
- widespread use of protocols we've studied: HTTP, DNS, TCP, UDP, IP, NAT, separation of data/control planes, SDN, Ethernet, tunneling
- interconnected to wired Internet

differences from wired Internet

- different wireless link layer
- mobility as a 1st class service
- user "identity" (via SIM card)
- business model: users subscribe to a cellular provider
 - strong notion of "home network" versus roaming on visited nets
 - global access, with authentication infrastructure, and inter-carrier settlements

Mobile device:

- smartphone, tablet, laptop, IoT, ... with 4G LTE radio
- 64-bit International Mobile Subscriber Identity (IMSI), stored on SIM (Subscriber Identity Module) card
- LTE jargon: User Equipment (UE)

Base station:

- at "edge" of carrier's network
- manages wireless radio resources, mobile devices in its coverage area ("cell")
- coordinates device authentication with other elements
- similar to WiFi AP but:
 - active role in user mobility
 - coordinates with nearly base stations to optimize radio use
- LTE jargon: eNode-B

Radio Access Network: 4G radio

- connects device (UE) to a base station (eNode-B)
 - multiple devices connected to each base station
- many different possible frequencies bands, multiple channels in each band
 - popular bands: 600, 700, 850, 1500, 1700, 1900, 2100, 2600, 3500 MHz
 - separate upstream and downstream channels
- sharing 4G radio channel among users:
 - OFDM: Orthogonal Frequency Division Multiplexing
 - combination of FDM, TDM
- 100's Mbps possible per user/device

Home Subscriber Service -

- stores info about mobile devices for which the HSS's network is their "home network"
- works with MME in device authentication

Serving Gateway (S-GW), PDN Gateway (P-GW)

- lie on data path from mobile to/from Internet
- P-GW
 - gateway to mobile cellular network
 - Looks like any other internet gateway router
 - provides NAT services

Mobility Management

Entity

- device authentication (device-to-network, networkto-device) coordinated with mobile home network HSS
- mobile device management:
 - device handover between cells
 - tracking/paging device location
- path (tunneling) setup from mobile device to P-GW

LTE: data plane control plane separation

control plane

 new protocols for mobility management , security, authentication (later)

data plane

- new protocols at link, physical layers
- extensive use of tunneling to facilitate mobility

Global cellular network: a network of IP networks

home network HSS:

 identify & services info, while in home network and roaming

all IP:

 carriers interconnect with each other, and public internet at exchange points

On to 5G: motivation

Figure: from Recommendation ITU-R M.2083-0 (2015)

"initial standards and launches have mostly focused on enhanced Mobile Broadband, 5G is expected to increasingly enable new business models and countless new use cases, in particular those of massive Machine Type Communications and Ultra-reliable and Low Latency Communications."

On to 5G: motivation

Industry verticals:

- Manufacturing
- Constructions
- Transport
- Health
- Smart communities
- Education
- Tourism
- Agriculture
- Finance

K. Schwab, "The Fourth Industrial Revolution," World Economic Forum.

On to 5G: Radio

- goal: 10x increase in peak bitrate, 10x decrease in latency, 100x increase in traffic capacity over 4G
- 5G NR (new radio):
 - two frequency bands: FR1 (450 MHz–6 GHz) and FR2 (24 GHz–52 GHz): millimeter wave frequencies
 - not backwards-compatible with 4G
 - MIMO: multiple directional antennae
- millimeter wave frequencies: much higher data rates, but over shorter distances
 - pico-cells: cells diameters: 10-100 m
 - massive, dense deployment of new base stations required

On beyond 5G?

- "6G" not obviously next: "NextG" and "Beyond 5G" heard more often than "6G"
- 5G on an evolutionary path (like the Internet)
 - agility: cloud technologies (SDN) mean new features can be introduced rapidly, deployed continuously
 - customization: change can be introduced bottom-up (e.g., by enterprises and edge cloud partners with Private 5G)
 - No need to wait for standardization
 - No need to reach agreement (among all incumbent stakeholders)

Chapter 7 outline

Introduction

Wireless

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

Chapter 7 summary

Wireless

- Wireless Links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

